Is there Still a Need for Multidimensional Data Models?
نویسندگان
چکیده
Organizational and technical changes challenge standards of data warehouse design and initiate a redesign of contemporary Business Intelligence and Analytics environments. As a result, the use of multidimensional models for performance oriented reasons is not necessarily taken for granted. Simple data models or operational structures emerge as a basis for complex analyses. The paper therefore conducts a laboratory experiment to examine from a non-technical perspective the influence of different data modeling types on the representational information quality of end users. A comparison is made between the multidimensional model and the transactional model respectively the flat file model. The experiment involves 78 participants and aims to compare perceived and observed representational information quality aspects of ad hoc analyses regarding the data modeling type. The results indicate a higher observed quality for multidimensional modeled data, while different types of data models do not influence the end user perception of the representational information quality.
منابع مشابه
Spatial Design for Knot Selection in Knot-Based Low-Rank Models
Analysis of large geostatistical data sets, usually, entail the expensive matrix computations. This problem creates challenges in implementing statistical inferences of traditional Bayesian models. In addition,researchers often face with multiple spatial data sets with complex spatial dependence structures that their analysis is difficult. This is a problem for MCMC sampling algorith...
متن کاملUsing a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting
Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...
متن کاملUsing a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting
Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...
متن کاملOptimal Coding Subgraph Selection under Survivability Constraint
Nowadays communication networks have become an essential and inevitable part of human life. Hence, there is an ever-increasing need for expanding bandwidth, decreasing delay and data transfer costs. These needs necessitate the efficient use of network facilities. Network coding is a new paradigm that allows the intermediate nodes in a network to create new packets by combining the packets recei...
متن کاملExpansionary-contradictory Policies in Stock Companies Using Left and Right Returns to Scales in Data Envelopment Analysis Models
The purpose of this paper is to evaluate the returns to scale of the Tehran Stock Exchange based on new models in data envelopment analysis. Using this assessment, it is possible to judge the application of contradictory or expansion policies in stock companies. To this end, there is a need for models in the data envelopment analysis that can assess the left and right returns to scales of the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014